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Solution Spectrum of Nonlinear Diffusion Equations 
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The stationary version of the nonlinear diffusion equation -ac/Ot+D Ac= 
co _p 

h~c-h2 c2 can be solved with the ansatz C=~p=lAp(coshkx ) , inducing 
a band structure with regard to the ratio A1/A 2. The resulting solution mani- 
fold can be related to an equilibrium of fluxes of nonequilibrium thermo- 
dynamics. The modification of this ansatz yielding the expansion c= 
~p,q=x Apq(COsh kx)-P[(cosh at) -a-' sinh at+b(cosh oft) -q] represents a sol- 
ution spectrum of the time-dependent nonlinear equation, and the stationary 
version can be found from the asymptotic behavior of the expansion. The 
solutions can be associated with reactive processes propagating along molecular 
chains, and their applicability to biophysical processes such as active transport 
phenomena and control circuit problems is discussed. There are also applications 
to cellular kinetics of clonogenic cell assays and spheroids. 

1. I N T R O D U C T I O N  

M a n y  p r o b l e m s  o f  many -pa r t i c l e  phys ics  and  re la ted  d isc ip l ines  (e.g., 
phys i ca l  chemis t ry ,  m o l e c u l a r  b iophys ic s ,  and  technica l  sc iences  such as 
con t ro l  theory)  give rise to a need  for  an e x t e n d e d  ana lys i s  o f  d i f fus ion 
processes .  F i ck ' s  law o f  di f fus ion 

-Oc/Ot + D Ac = 0 .(1) 

which  is a spec ia l  case o f  the  F o k k e r - P l a n c k - K o l m o g o r o v  equa t ion ,  is on ly  
pa r t i a l l y  a p p l i c a b l e  to the  a b o v e - m e n t i o n e d  areas  because  react ive  p rocesses  
a re  no t  i n c l u d e d  in equa t ion  (1). In  pa r t i cu la r ,  d i s s ipa t ive  s t ructures  and  
the  equ i l ib r ium o f  fluxes in n o n e q u i l i b r i u m  t h e r m o d y n a m i c s  ( N T D )  are  
b e c o m i n g  o f  inc reas ing  i m p o r t a n c e  (Pr igogine ,  1967; Trzesowski ,  1989; 
Tur ing ,  1952). Act ive  t r anspor t  and  the  b i o p h y s i c a l  m e c h a n i s m s  r e spons ib le  
for  the  p e r m e a t i o n  o f  b i o m o l e c u l e s  t h rough  cell  m e m b r a n e s  in o p p o s i t e  
d i r ec t ion  to the  d i f fus ion cur ren t  j o  = D Vc (Aus t in  et al., 1983; Panda ,  
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1981; Vaz and Criado, 1985; Vaz et al., 1985a, b) are of particular importance 
in neurobiophysics. 

Nonlinear generalizations of equation (1), e.g., 

- O c / a t  + D Ac = Xlc - X2c 2 (2) 

are promising starting points for many problems of NTD (Das and Sihi, 
1979; Flannery, 1982; Kramer and Riecke, 1985; Mishin, 1982a, b) and 
molecular biophysics (Talekar, 1981; Ulmer, 1983, 1985; Vaz et al., 1985b). 
Soliton solutions result from equation (2) (Satsuma, 1981; Stix, 1979), and 
these solutions may be considered for the propagation of reactive processes 
in molecular chains and fluids, 

Equation (2) contains a nonlinear rate equation besides the diffusion 
term. By either assuming a spatial equilibrium concentration or formally 
putting D---0, we obtain a pure kinetic equation 

-Oc /Ot  = A l C -  X2c 2 (3) 

Particular solutions of equation (3) have been considered following the 
extension of this equation to two mutually coupled constituents of matter 
(Phillipson and Schuster, 1983). Such solutions are very informative as 
models of regulatory processes, but some shortcomings with regard to 
dissipative structures are evident. Equation (3) requires spatial equilibrium, 
whereas in NTD and molecular biophysics spatial inequilibrium is an 
essential feature of dissipative structures. 

Many starting points for generalizations have been taken into account 
to adjust equation (1) to the complexity of dissipative structures (e.g., 
biological systems) by the consideration of diffusion and kinetics in cur- 
vilinear spaces (Trzesowski, 1989), but it appears that the most essential 
extension of equation (1) is the nonlinear term A2 c2 introduced in equation 
(2). As shown in Ulmer (1985), equation (2) may be made invariant under 
Galilei transformations by the introduction of an additional term -v  Vc 

-Oc /Ot  - v  Vc + D Ac = Alc - }[2 c2 (4) 

because this term can take account of a convection current due to a pressure 
gradient besides the diffusion current jo. If c(x, t) is a solution function of 
equation (2), then by the substitution x ~ x '=  x -v t ,  c(x-vt ,  t) becomes a 
solution function of equation (4). Equation (4) agrees with equation (2) 
only in the reference system x '  = x -  vt, t' = t (one space coordinate), 

- O c / O t  + D t92 c / a x  '2 = A 1C - A2 c2 (4a) 

Thus equation (4) contains, besides the diffusion term D Ac according to 
equation (1), the transport term v Vc, which represents an essential part of 
the Boltzmann equation. In particular, the nonlinear term A2 c2 can also be 
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related to the collision interaction term of this equation because c(x, t) 
represents a statistical distribution function of identical particles at the 
position x. In the following, we regard equation (4) as a reference equation 
for similar problems, because equations (1)-(3) result as special cases 
from (4). 

The relationship between Fick's law (1) and the linear Schr6dinger 
equation has been pointed out in many textbooks of quantum theory, and 
a similar connection is obvious between the nonlinear diffusion equations 
(2), (4), and (4a) and the nonlinear Schr6dinger equation 

oait h 2 ozxI t 
- -  - al,I,12  , ( 5 )  

Ot 2rn Ox 2 

Ulmer (1988, 1989) presented solution spectra of equation (5) obtained, 
e.g., by the expansion 

= ~ Ap[cosh(kx- vt)] -p (6) 
p= l  

In this communication we consider the applicability of the ansatz (6) to 
the above-mentioned nonlinear diffusion equations. In a further step, it is 
shown that the presented starting point (6) is also adequate for more complex 
problems of coupled constituents. 

2. THE SOLUTION SPECTRUM OF THE 
EXPANSION c = ~ = 1  Ap(eosh kx) -p 

To illustrate the method, we first consider the solution spectrum of the 
equation (in one space coordinate) 

D 02c/Ox 2= h l c - A 2  c2 (7) 

which can be solved by the above expansion corresponding to equation 
(6). Straightforward generalizations (time dependence of nonstationary 
solutions, extension to three space coordinates) are possible. Each solution 
function of equation (7) represents either a stationary solution of equation 
(2) with Oc/Ot = 0 or a concentration profile c(x') propagating with velocity 
v (x '=  x - vt) according to equation (4). A solitary wave solution of equation 
(7) is obtained by the ansatz 

c = A(cosh kx)-2 + B (8) 

Thus, equation (7) is satisfied if the relations 

B - O ,  A=+3A1/2A2, k2=AI /4D (A~ > 0, A2> 0) (8a) 
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o r  

B=+A1/A2, - A = 3 A , / 2 A 2 ,  k2=-X , /4D  (h i<0 ,  A2>0) (8b) 

hold. However, only the soliton solution (8a) can be normalized 

I +~ c(x) dx = 1 -~ A = k/2 (8c) 

Although solitary solutions are valuable in many applications, the increasing 
importance of nonlinear problems is a rationale for finding systematic 
solution methods. With the help of the expansion 

c = ~ Ap(cosh kx) -p (9) 
p = l  

equation (7) becomes 

Dk 2 ~, Ap[p2(cosh kx) -p - p ( p +  1)(cosh kx) -p-2] 
P 

= A, ~, Ap(cosh kx) -p - A2 ~ ApAq(cosh kx) -p-q (9a) 
p = l  p , q ~ l  

Because equation (9a) must be satisfied for arbitrary values of the argument 
x, the coefficients of each power of cosh kx resulting from equation (9a) 
have to satisfy this equation, and similar conclusions have been made with 
regard to the nonlinear Schr6dinger equation (5) (Ulmer, 1988, 1989). The 
condition p = 1 ~ (cosh kx) -~ implies the relation 

Ax(Dk 2-  A,) = 0 (9b) 

Because AI is arbitrary [and will be defined later by the normalization 
condition S+_~ c(x) dx = 1], the relation hi = Dk 2 must hold. The continua- 
tion to higher-order powers [(coshkx)-~, f l>l]  is straightforward, 
e.g., p = 2, 3 imply 

A2 = -A2A~/3A1 

A3 = A1/4+ A~A3/12A] 

With the help of equations (9a) and (9b) the expansion coefficients 
A2, A3, .. �9 of equation (9) are determined recursively in terms of A1 : A1 -~ 
A2 ~ A3"> A 4 "  �9 " ~ A p ,  and Table I presents the expansion coefficients up 
to the order p = 10. 
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The general formation law Ap =Ap(A1) is given by the recurrence 
formula 

where 

and 

M f~(p)Ap-2~up-,-2~ pA~uP-' ~- ~ (10) 
Ap 3p_ 12p-------- ~ r=l  3P -1 -2"2  p-1 

r--1 
(p -2 r )2  1-[ ( P - J )  (lOa) 

fr(P) - r! j=l 

u = -A2/A1 (10b) 

M = ( p - 1 ) / 2  i fp  is odd; M = p / 2 - 1  i fp  is even 

Formula (10) can be obtained by the following relations resulting from 
equation (9a): Assume a coefficient Ap with odd p, where Ap is given by 

mp- p - 2 Ap-2 2A2 
p + l  (p+  1 ) ( p -  1)A1 

x (A1Ap_I + AEAp-2 +" �9 �9 + A(p-~/2A(p+~)/2) (10c) 

then the preceding coefficient Ap_~ being of even order is given by the 
expression 

p - - 3  )t 2 
Ap-i - A p - 3  

p aap(p -2 )  

2 x(A(p_l~/2+2AiAp_2+'. .+2Ap,_~Ap,+l) p ' = ( p - 1 ) / 2  (10d) 

Thus we can substitute Ap_~ occurring in (10c) by the expression (10d) and 
repeat the procedure successively to eliminate Ap_2, Ap-3, . . . ,  until A~. 

However, we have not yet defined A1, because formula (10) only 
expressed the A~ dependence of Ap ( p >  1), and A 1 c a n  be defined by a 
norm implying the consideration of the convergence properties of the 
expansion (9) related to (9a). 

The subsequent convergence analysis follows partially the correspond- 
ing analysis related to the nonlinear Schr/Sdinger equation (5) and the 
expansion (6) (Ulmer, 1988, 1989), but because c(x) may either be regarded 
as a concentration function or a probability distribution, the assumption 
of the L~norm~ c(x) d x = l  is adequate, whereas with regard to 
equation (5) we have assumed the L2 norm ~ I1'I' II 2 = 1. Using formula ( 10 ), 
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we consider now the pointwise convergence of equation (9a); the existence 
of the L~ norm can be readily derived by the pointwise convergence. Thus, 
the convergence problems arising from the nonlinear term of equation (7) 
can be clarified by considering the linear version of equation (7) by taking 
A2 = 0; using the substitution p = (cosh kx) -1, we find for equation (9) the 
simple form 

A2p+l 4P2- (11) 
A2p-1 4p2.t_ ~P p 2  

where A1 = k2/D. The relation (11) is absolutely convergent for p < 1 ( ~ x  
0), whereas for p = 1 ( ~ x  = 0) the ratio A2p+l/Azp_ 1 becomes 1 by taking 
limp ~ ~ ,  implying that the condition for absolute convergence does not 
hold independent of the k value of (cosh kx) -p, and there is no restriction 
with regard to the k value. Due to the nonlinear contributions of equation 
(9a) with ~ 2  ~ 0, we show that this equation exhibits pointwise convergence 
for - ~ - x - <  +~ ,  but the expansion (9) is only conditionally convergent. 
It should be noted that we may restrict our analysis to the zero point p = 1, 

~x3 
because the convergence of c=~p=a App p is satisfied for p < 1 if it holds 
for p =  1. 

With regard to equation (9a) and formula (10), the Leibniz criterion 
of conditionally convergent series is applicable: 

(i) ~ Ap= ~ IApl(-1) p (12) 
p = l  p = l  

(ii) lim A e ~ 0 (12a) 
p ---~ oo 

(iii) IAI]> IA21 > IA31 > " "  > lAp[ (12b) 

Thus, condition (i), equation (12), immediately follows from formula (10) 
(see also Table I) because for those Ap with odd p the powers of A1, 
according to Ap = Ap(AO, are also odd and the powers of u (u = - h z / h 0  
are of even order. Therefore, sign Ap (p > 1) agrees with sign A~ for odd 
p, whereas with regard to even p we have the reverse situation: the powers 
Ap(AO are of even order and the powers of u are odd throughout, yielding 
sign Ap = -sign A~ for even p. 

The conditions (12a) and (12b) imply a recursive function with regard 
to the formation law (10): As a first step, the inequalities l ad> Ia21 > Ia31 > 
IA41 must be fulfilled for suitable upper and lower bounds of u. In a second 
step, it has to be examined whether the bounds satisfy the subsequent 
inequalities for p > 4. If they are not generally suitable, the procedure must 
be continued by taking into account coefficients Ap with p > 4. With respect 
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to equations (9a) and (10) the relations 

[Umax[ < 3/A1 
lumin[>2/Al-~$/Aa, 6<11/108 (13) 

turn out to be sufficient for the Leibniz conditions (12a) and (12b). 
The existence of the L1 norm c(x) dx = 1 can be derived from the 

pointwise convergence. Using the relations 

f+~o 1 . 3 . 5 . . . ( p _ 2 )  ( p >  1 and odd) Sp= _ dx(c~ 

and 

Sp = I ~ dx (cosh kx)-V = S2 ~ "4"6" " " (p -  2) 
_ . 5 . 7 . . . ( p - l )  ( p > 2  and even) 

where Sl = ~r/k and $2 = 2/k, we obtain 

f +~ ~c(x) dx=alSl + a2S2+" " "+~ a'nSm= Ll(c)= m (14) 

because Sl > $2 > $3 >" �9 �9 > Sp (limp_~ Sp ~ 0) and 

I ( )J L(c)=S~ A~+ A~S~+...+Y~S~A~ S-; 1 ~_S~ Y. & 
p p=l  

hold. With regard to the relation Ap = Ap(A1), according to equation (10), 
the L1 norm (14) implies a polynomial equation in terms of powers of A~ 
of infinite order, yielding for each permitted value u = -A2/A~ with lUminl < 
lul<lu~axl a denumerably infinite set of solutions cM(x), where M =  
1, 2, 3 , . . . ,  c~. 

It should be pointed out that the expansion (9) provides further sol- 
utions and their convergence properties are rather equivalent because we 
only have to perform proper substitutions. Thus, on putting A1-0 ,  the 
expansion (9) reads 

C2(X) = ~ Ap(cosh kx) -p (15) 
p=2 

and k is determined by k 2= A~D/4. Now the coefficients Ap (p> 2) are 
given by the relation A2-~A4~A6~ A2p , and A2 assumes the role of the 
norm amplitude. Thus in this case all coefficients with odd p (A3, A s , . . . )  
vanish identically. With the same justification we can put all Ap -- 0 (p < fl) 
and take only the sum 

c ; =  ~ Av~(coshkx) -p 
p=~ (16) 

/ 3 = 1 , 2 , 3 , 4 , . . . ,  M = 1 , 2 , 3 , 4  . . . .  
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Then the determination of all coefficients Ap (p >/3) is expressed in terms 
of Ate: Ap = Ap(Ao) .  Thus for each eigenfunction (16) of equation (7) with 
/3 = 1, 2, 3 , . . . ,  there exists a denumerably infinite set of functions (M = 
1, 2 , . . . )  for each permitted k value (or ratio u = -Az/A1). Between k 2 and 
A1 the relation 

k 2 = A1/#~'D (/3 = 1, 2, 3 , . . . )  (16a) 

holds. Because the Leibniz criterion for conditionally convergent series has 
to be applied to each eigenfunction, we obtain a "band structure" of a 
permitted spectrum of the ratio u =-Az/AI:  

[Umin(/3)! < lu(/3)l < lUmax(/3)l (16b) 

This "band structure" with regard to the ratio u holds because it is impossible 
to form absolutely convergent expansions of equation (9) with regard to 
the nonlinear equation (7) or (9a). 

The solution manifold given by the expansion (9) is symmetric because 
of the property [cosh(kx)] -p= [cosh(-kx)] -p for each p. By regarding the 
solution manifold of the nonlinear Schrrdinger equation (5), which also 
shows solutions of the form ~=Y~p Ap(cosh kx) -p-1 sin kx, the question 
arises of whether equation (7) can also be solved by the antisymmetric 
expansion 

c = ~ Ap(cosh kx) -p-I sinh kx (17) 
p = l  

However, this is not possible because equation (7) exhibits only a nonlinear 
term of second order (A2c2), implying the square of antisymmetric contribu- 
tions [(cosh kx)2-1 = (sinh kx)Z], in contrast to the cubic nonlinearity 
-1~12~ of equation (5). On the other hand, the linear combination of 
expansions (9) and (17), 

co 

c = Y. [Ap(cosh k x ) - P + B p ( c o s h  kx) -p-1 sinh kx] (18) 
p = l  

can satisfy equation (7). The coefficients Pip and B e are determined recur- 
sively by collecting all terms related to the powers (cosh kx) -p and 
(cosh kx) -p-~ sinh kx. We also note that the Galilei-transformed solution 
of the expansion (9) (x  ~ x '  = x - vt), 

c ~ ( x -  vt) = ~ a ~ [ c o s h ( k x -  u't)]-P/) '=  kv (19) 

satisfies equation (4) with regard to one space coordinate, but the expansion 
(19) does not represent the time dependence according to equation (2), 
because by taking v = 0 it turns out we obtain the stationary version Oc/Ot = O, 
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whereas the complete time dependence requires solutions of the form 
c(x - vt, t) to satisfy both equation (2) and equation (4). Solutions of this 
property can be found with some modifications of the ansatz (18). In spite 
of this lack of the manifold (19) or (9), it is valuable to know the solution 
spectrum of stationary concentration distributions (stable wave packets) 
propagating with the velocity v in one space dimension. 

3. S O M E  EXTENSIONS 

The consideration of concentration profiles in one space dimension as 
given by equations (9) and (19) is mainly justified by the clarity of the 
underlying procedure. A possible generalization to three space coordinates 
of the expansion (9) solving equation (7) that is just as straightforward as 
in one space coordinate is given by the substitution kx~ klx+ k2y+ k32. 

Then equation (9) becomes 

c(x, y, z) = ~ Ap[cosh(klx+ kEy+ kaz)] -p (20) 
p = l  

and formula (10) remains valid if the substitution k 2 2 2 2 =kl+k2+k3 is per- 
formed, yielding h~ = Ok 2. The convergence analysis referring to pointwise 
convergence also remains unchanged, but the LI norm does not exist if 
c(x, y, z) is given by equation (20). By the substitutions u = k~x + kEy + kaz, 
v = k2y, and w = k3z we obtain 

f S f  c(x,y,z)  d x d y d z ~ f f f  c (u)dudvdw (20a) 
--c~ - c o  

which is divergent with respect to v and w. The expansion (20) only permits 
the introduction of the maximum norm, which also results from the property 
of pointwise convergence, 

M(c) = max c(x, y, z) = 1 ~ ~ Ap = 1 (20b) 
x,y,z=O p = l  

On the other hand, the introduction of a product function 

c(x, y, z) = ~ Ap(cosh klx)-P(cosh k2y)-P(cosh k3z) -p (20c) 
p=l  

would be compatible with the L~ norm, but the nonlinear equation (7) 
cannot be satisfied. 
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However, the extension of equation (7) to three space coordinates 
(D hc  = A~c- h2c 2) can be solved rigorously by the following modification 
of  the expansion (9): 

c~  = ~ ApMq, r(cosh klx)-P(cosh k2y)-q(cosh k3z) -r (21) 
p,q,r =13 

where/3 and M run over 1, 2, 3 , . . . ,  0o. 
It is apparent that the effort to determine the coefficients Ap, q.r for 

p, q, r > fl in terms of A~,~,~ increases significantly. On the other hand, the 
convergence analysis for the consideration of pointwise convergence is 
equivalent to that given by the relations (12), (12a), and (12b), and the 
expansion (21) can be subjected to the L~ norm 

-~oo 

because the norm amplitude Ao,o,o can be fixed by the L1 norm. With regard 
to equation (7), the following relation holds: 

k 2 = h,/O/3 ~ (k 2 = k~+ k~+ k~) (/3 = 1, 2, 3 , . . . )  (22) 

We also point out that the parameter M (M = 1, 2 . . . .  ) has the same meaning 
as in equation (16). Although the expansion (21) represents an extension 
to the three-dimensional case, the determination of the coefficients Ap.q,r, 
where p, q, r >/3, in terms of  Ar r is an enormous combinatorical task, 
and only the diagonal elements Ap,e, p are identical with the one-dimensional 
case. The off-diagonal elements Ap, q,r, where p # q # r # p, are responsible 
for the failure of the product ansatz (20c). We have performed some test 
calculations with regard to the case fl = 1 and have verified that almost all 
off-diagonal elements Ap, q,r vanish identically, but the nonvanishing ele- 
ments are the very reason that the expansion (20c) cannot satisfy the 
stationary version of equations (2) and (4). We also note that with regard 
to three dimensions it is not necessary to restrict the diffusion coefficient 
D to the isotropic case, because in the anisotropic case (consideration of 
the principal axes) the relation (22) has to be modified slightly 

a~ = (Dike+ 02k2+ O3k~)~ 2 (/~ = 1, 2 , . . . )  (22a) 

In view of the increased combinatorical task resulting from the ansatz (21), 
it appears that for practical applications computer programs are needed for 
the calculation of  the elements Ap, q,r, where p, q, and r are restricted to, 
e.g., Mo = 100 instead of taking M0 ~ oo. 
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At the present stage, our main interest lies in the treatment of the time 
dependence of equation (2) or equation (4) by the restriction to one space 
coordinate. This can be done with the help of the expansion (18) and the 
consideration of the ansatz (21). From the ansatz (21) it follows that if e(x) 
is, a stationary solution of equation (2) in one space coordinate, then by 
the substitution x--> x - v t  we do not obtain the general time-dependent 
solution of equation (2) representing an extension to two variables, but 
only a particular solution of equation (4), because we have not yet treated 
the time as an independent variable. Thus equation (2) or equation (4) is 
of second order with regard to the spatial derivatives, but of first order with 
regard to the time derivative. Therefore we can maintain the ansatz (9) with 
respect to the x coordinate, whereas for the time we have to take into 
account the ansatz (18), and because we consider now two independent 
variables, the simplest ansatz reads 

c(x, t) = ~ Ap, q[(cosh t~t) -q-1 sinh a t +  b(cosh oft) -q] (cosh kx) -p 
p , q = l  

(23) 

Introducing the ansatz (23) into equation (2), we obtain 

Ap, q[(cosh kx)-P qa( cosh at) -q - ct( q + 1)(cosh at) -q-2 
p , q = l  

+ q~zb(cosh at) -q-1 sinh at] 

0:3 

+ Dk2 X a/,,q[(Cosh ott) -q-1 sinh at + b(cosh ott) -q 
p , q = l  

x [p2(cosh kx) -p - p ( p  + 1)(cosh kx) -p-E] 

oo 

= A1 Y, Ap, q(cosh kx)-P[(cosh at) -q-1 sinh at+ b(cosh txt) -q] 
p , q = l  

-- A2 ~ Ap,,qtAp2,q2(cosh kx)-P,-P2 
pl ,P2,ql ,q2 = 1 

X [(cosh oft) -q ' -%-  (cosh tzt)-ql-q:-2+ bE(cosh ott)-%-q2 

+ 2b(cosh at)-ql-q:-I sinh ~zt] (23a) 

A comparison of the expression (23a) with the simplified version (9a) shows 
that many terms of the computation procedure referring to Ap, o can be used. 
If p and q run from 1 to infinity, then all coefficients Ap, q are determined 
in terms ofAl,~. This results from (23a) using conclusions we have previously 
made: Thus all contributions referring to each power of the form 
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(cosh k,x)-~(cosh c~t) -~' and (cosh kx)-t~(cosh a t )  -~'-1 sinh a t  according to 
equation (23a) must satisfy this equation. For p = q = 1 we obtain 

A l , l a  + D k 2 A l , l b  = A1AI , lb  
(23b) 

A l , l a b  + Dk2AI,1 = A iAl,~ 

It follows from the relation (23b) that the further relations 

b-- 1~ a = A 1 - D k  2 
(23c) 

b = - 1  -~ a = D k  2 - A1 

must be valid. 
The convergence analysis completely follows the relations (10)-(14), 

and it is satisfying that the computational procedure for the determination 
of the coefficients my, q in terms of Aa,~ can be reduced to the previously 
discussed one by proper substitutions. The norm amplitude is now defined 
by A~,I. However, the case discussed above according to the ansatz (23) 
requires only the L1 norm with reference to the space variable 5+~ c ( x )  dx  = 

1, whereas with regard to the time variable we can make use of the initial 
condition c(x,  t = O)= Co(X). This initial condition is consistent with the 
ansatz (23), as (cosh ot t )  -q--> 1 and sinh oLt~ 0 for t-~ 0 (q arbitrary). The 
ansatz (23) is also compatible with the stationary restrictions given by 
equations (7), (gb), or (22), as by taking a ~ 0, equation (9) results from 
(23) and the relation (23c) implies the relation (gb). 

In principle, it is possible to regard the ansatz (23) in three space 
dimensions according to the expansion (21), but the increasing effort is 
evident, and therefore essential properties such as convergence conditions 
and the exact computation of the expansion coefficients should be performed 
with the help of simplified versions. With regard to the expansion (23) it 
is also true that we do not have to take the sum from p, q = 1 , . . . ,  to infinity, 
because we may also start from p, q = fl . . . .  , to infinity and put all terms 
of  Ap.q =- 0 if p or q is less than ft. Then the relation (23c) must be slightly 
modified: 

b = 1 ~ af t  = A x - D k 2 f l  2 
(fl = 1 ,2 , . . . )  (23d) 

b = - 1  ~ olfi = D k 2 f l  2 - 1~ 1 

Therefore we are able to summarize this by the expansion 

c ~ ( x -  vt, t) = ~ A~q[cosh(kx-  v ' t )]  -v  
p,q=~ 

• [(cosh a t )  -~ sinh a t +  b(cosh a t )  -q] 

(fl, M = 1, 2 , . . . )  (24) 
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We obtain the solution spectrum of equation (4), and by taking v = 0, we 
see that the expansion (24) represents the solution spectrum of equation 
(2), because for simplicity we have only considered one space coordinate. 
With the help of the expansion (21) we may modify equation (24) to obtain 
the solution manifold of equation (2) in three space dimensions, 

c~(x,  y, z, t) 

= ~ A~.e2,,3,q(cosh klx)-P'(cosh k2y)-P2(cosh k32) -p3 
p l , P 2 , P 3 , q  = [3 

X [(cosh o~t) -q-1  sinh at + b(cosh at) -q] 

(/3, M = 1, 2 , . . . )  (24a) 

but the recursive procedure for the determination of the coefficients AM,p2,p3,q 
increases considerably and therefore we prefer model considerations in one 
space coordinate. 

4. GENERAL DISCUSSION 

There are many applications where diffusion processes play an essential 
role with respect to the requirement of stationary conditions [equation (2) 
or equation (4)], referred to as equilibrium of fluxes by NTD. According 
to Prigogine (1967), the formation of dissipative structures induced by 
diffusion can be realized by nonequilibrium stationary states that are stable 
for small disturbances. Thus, the existence of dissipative structures is closely 
related to the so-called local thermodynamic equilibrium states. Therefore 
we point out that the stationary equation (7) is useful if it is founded by a 
general time dependence, e.g., equation (2). By taking formally a ~ 0, we 
obtain in fact the condition (16a) from the relation (23d), and the expansion 
(23) is converted to the ansatz (9). However, if the condition 

hi 
Dk2fl2 - 1+7  (171<< 1) (25) 

holds for some values of/3 or (and) proper D, then those concentration 
distribution functions c~(x,  t) satisfying relation (25) for some /3 values 
realize nonequilibrium stationary states in the sense of NTD, as long as the 
associated time interval T(7) does not exceed a -~. But by taking t-+ oe (or 
by consideration of a sufficiently long, finite time t) the time behavior of 
the solution manifold c~(x,  t) of equation (23) does not provide stable 
nonequilibrium states, because these solutions vanish for t--> ee, and there- 
fore the following interpretation holds: If c~(x)  is the initial concentration 
distribution at t = 0, then for long time intervals (t --> oe) the time-dependent 
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parts of equation (23) behave as damping functions with vanishing con- 
centrations for c~(x, t ~ ~). The same behavior is also true for the Gaussian 
distribution function 

, (x 3 
c(x, t) -2(DTrt)l/2 exp ~ 

of the pure diffusion equation (1). 
Although the solution spectrum (23) is consistent with the nonlinear 

diffusion equation (2) [or (4), if the modification (24) is considered] there 
exists a slight modification of the expansion (23) satisfying also equation 
(2). With regard to the expansion (23), we have assumed the normalization 
condition 

f+~c(x , t=O) d x = l _  

but the expansion (23) would also permit an additional integration 
4-o0 

- oo  

which we do not require. Thus, for the normalization condition 

f ~ c ( x , t = O )  dx=l  

it is sufficient to permit a time dependence with nonvanishing contributions 
by taking t-~ c~, e.g., a tanh(at) contribution, and the modified version of 
equation (23) reads 

c~(x, t )= ~ Ap~q(cosh kx) -p 
p , q = f l  

X [(cosh at)-q(sinh at) ~ + b(cosh at) -q] (26) 

implying also a term (tanh at) t~ for q =/3. The behavior of this expansion 
satisfying equation (2) is interesting, because the initial states c~(x, t = O) 
agree with the final states cy(x, t -~ oo), and only for 0 < t < oo may the states 
vary in dependence on the time parameter. Thus, equation (2) is consistent 
with two rather similar solution manifolds given by the expansions (23) 
and (26), but they differ considerably with regard to their asymptotic 
behavior t -~ oo. 

Studies have also been made of solitary solutions of equation (2) closely 
related to the expansion (26) (Hirota, 1981; Kramer and Riecke, 1985; 
Satsuma, 1981; Ulmer, 1983, 1985), which may be constructed on the basis 
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of the solitary solutions (8) of the stationary nonlinear equation (7) and of 
the solitary solutions 

C(t) = h l / 2 h  2 - (ha/2A2) t a n h ( A l t / 2 )  (27) 

and 

c(t) = A~/2A2+ (A1/2A2) tanh(-aat /2)  (27a) 

of the nonlinear kinetic equation (3). Equation (2) is referred to as the 
Fisher equation (Mishin, 1982a, b; Stix, 1979) and Kolmogorov early sup- 
posed the existence of wavefront solutions (Das, 1984). Steeb (1985) 
analyzed the group-theoretic properties of equations (1) and (2) using 
generators of the Lie groups. 

Solitary solutions of equations (2) and (4) have been considered in 
statistical physics [e.g., many-particle physics and biophysics (Das and Sihi, 
1979; Flannery, 1982; Hirota, 1981; Kramer and Riecke, 1985; Mishin, 
1982a, b; Satsuma, 1981; Stix, 1979; Ulmer, 1983, 1985], and the extension 
of the pure diffusion equation (1) by the kinetic terms Aac- A2c 2 makes it 
possible to describe the stationary states of an equilibrium of fluxes. The 
characterization of such stable nonequilibrium states is of great relevance 
in molecular biophysics [e.g., chromosome band structure analysis (Ulmer, 
1983, 1985) and the active transport of K § and Na § ions through cell 
membranes (Na § -+ outside and K § -+ inside the cell) as supported by hydro- 
lytic ATP decay]. It has been shown (Panda, 1981) that this transport 
phenomenon is not satisfactorily understood by the Onsager relations. 
Soliton mechanisms have been playing an increasing role in biophysics 
since Davydov (1979) successfully elucidated the release of free energy by 
ATP decay in a-helix proteins and the energy transport mechanism of 
muscle contraction. The solution manifold (19) of the nonlinear equation 
(4) can also be interpreted as stable soliton solutions associated with the 
propagation of a reactive process described by the concentration distribution 
c ( x  - vt)  in molecular chains or fluids. 

There are various processes such as DNA or RNA replication kinetics 
(Biebricher et al., 1983; Eigen and Gardiner, 1984; Eigen, 1985; Poerschke, 
1984) and lateral inhibition of diffusion at certain membrane regions (Austin 
et aL, 1983; Jovin, 1984; Vaz and Criado, 1985; Vaz et al., 1985a, b), where 
diffusion processes and kinetics should be considered simultaneously. The 
restriction to solutions of equation (1) for chromosome band structure 
analysis (Talekar, 1981) is insufficient because pure diffusion lacks stationary 
nonequilibrium states. In view of the complexity of biological structures 
and processes, equations (2), (4), and (7) and the solution spectra represen- 
ted by the expansions (9), (18), (19), (23), (24), and (26) represent simplified 
models because we have to consider synergistic interactions among the 
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many constituents involved in biophysical processes. Equation (2) and its 
solution functions can be related to the autocatalytic process of the spatial 
distribution of a specific class of interacting molecules. The decay kinetics 
(-A~c) and the formation of new molecules (~-A2c 2) can be associated 
with a reservoir (similar to thermodynamics) consisting of an enormous 
concentration which remains unchanged by the admission and delivery of 
molecules according to the following scheme: 

~-.  
reservoir ~ c(x, t) ~ reservoir 

In a previous investigation (Ulmer, 1990), we analyzed the kinetics 
and spatial distribution of the decay and renewal of cellular ATP (L 1210 
cells) by 31p-NMR spectroscopy after the cells were exposed to doses of 
y-rays. It turned out that the concentration distributions of ATP before 
irradiation and at a long time after irradiation, where the recovery processes 
for renewal of ATP are completed, correspond rather precisely to the 
stationary conditions (initial and asymptotic) of the solution function (26) 
with/3 = 1, and the decay and repair kinetics observed by 31P-NMR was in 
agreement with the time behavior of this function. Therefore the hydrolytic 
decay A T P -  ADP+inorganic phosphate in cells and the renewal ADP+ 
inorganic phosphates - ATP via oxidative phosphorylation can be success- 
fully compared with the above reservoir model, although for the latter 
reaction numerous steps and enzymes are involved. 

A control circuit of two different classes of molecules [c~(x, t) and 
c2(x, t)], which may also be considered as a cross-catalytic feedback mechan- 
ism, can be obtained through a two-component extension of equation (2), 

-Ocl/Ot+ DI Ac 1 2 2 (28) : -~/~12C2C1 --/~21 C2C1 

and 

_acz/Ot+D2Ac 2 , 2 , 2 (28a) = + A 2 1 c l c 2 - A 1 2 C l C 2  

It is a particular feature of these equations that the decay of the concentration 
c~ is connected to the formation of c2 and conversely. The solution manifold 
of the coupled nonlinear equations (28), (28a) can be obtained (in one 
space coordinate) by the expansion 

M Ck,~ = ~ AkMpq(COSh kx)-" 
p,q = f l  

• [(cosh at)q(sinh at) t3 + bk(cOsh at) -q] (29) 

k =  1, 2 and M,/3 = 1, 2, 3 , . . . .  Now a and k 2 are functions of A12, h2~, A~, 
A~2, and Dk, and the parameters bl and b2 are determined by the initial 
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conditions c~(x, t=0) ,  c2(x, t=0) .  The computational procedure is not 
significantly more intricate than that of the expansion (26), but we do not 
discuss here the solutions and their biophysical relevance. It should be 
mentioned that particular solutions referring solely to kinetic equations [D~ 
and D2 of equations (28), (28a) are assumed to be zero] have been considered 
in Phillipson and Schuster (1983). Turing (1952) very early pointed out that 
the solutions of such a class of coupled nonlinear equations can be used 
for structural assays. 

With regard to equations (1) and (2), it should be mentioned that it is 
reasonable to also take into account a nonlinear transport equation of heat 

-OT/Ot + K AT--- )tiT- ~.2T 2 (30) 

which may be associated with a heat control circuit, because the term A2 T 
can be related to the consumption of heat and the nonlinear term }rE T2 to 
a source. The solution procedure is completely identical to the previously 
discussed methods, and it is possible to regard one component of equations 
(28), (28a) as a transport equation of heat according to equation (30). Then 
we obtain solutions where the decay and formation of molecules are 
connected to the local distribution of heat. 

The biological applications of equation (2) have not yet been exhausted; 
according to Gierer (1980), we can replace molecules by "supermolecular" 
cells consisting of numerous interacting molecules, and the cells may also 
undergo decay by cellular death and renewal by cell division (mitosis). The 
interaction between cells is mediated via membranes, and therefore a non- 
linear term is in fact justified. Since a cellular assay consists of ca. 106-108 
cells (monolayers or spheroids of cell cultures), a cellular distribution 
function N(x ,  t) related to the number of cells can replace the molecular 
concentration functions c(x, t), and we obtain an analog of equation (2), 

-ON/Or + D A N  = • l N -  A2N 2 (31) 

The solution procedures can be transferred from the discussed methods. 
By doing so and making use of known results, we can explain how in vitro 
cultures can only grow up to a final extent. In vivo, one has to regard 
equation (31) as a system of interacting, highly differentiated cells (instead 
of clonogenic cultures) obeying also characteristic control circuits with 
respect to their growth and pattern arrays, and equations (28), (28a) only 
represent a starting point for more complex situations. 

Thus, the study of nonlinear diffusion equations is justified for many 
disciplines. We finally mention that the simplified kinetic equation (3) has 
been subjected to computer studies on sequences of numbers (e.g., Feigen- 
baum set) without taking account of analytical solutions. The results are 
periodic alterations of regular structures and chaotic behavior, and this 



Solution Spectrum of Nonlinear Diffusion Equations 1567 

b e h a v i o r  c o r r e s p o n d s  to the  b a n d  s t ructure  cond i t ions  fo l lowing  f rom 
cond i t i ona l  convergence ,  e.g., equa t ions  (12), (12a),  (12b),  a n d  (16b). The  
so-ca l led  " c h a o t i c  b e h a v i o r "  o f  d y n a m i c a l  systems is r e la ted  to non in tegra -  
bi l i ty ,  as shown  by  Pr igogine  et al. (1991). 
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